Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 0385520220350060256
Analytical Science & Technology
2022 Volume.35 No. 6 p.256 ~ p.266
Optimization for I-129 analytical method of radioactive waste sample using a high-temperature combustion tube furnace
Lee Chae-Yeon

Lim Jong-Myoung
Kim Hyun-Cheol
Park Ji-Young
Lee Jin-Hong
Abstract
It is important to determine the concentration of long-lived radionuclides (e.g., 129I) in nuclear waste to ensure safety when handling it. To analyze nuclides in a solid sample (e.g., concrete and soil), it is essential to effectively separate and purify the nuclides of interest in the sample. This study reports the comprehensive efforts made to validate the analytical procedure for 129I detection in solid samples, using a high-temperature combustion furnace. 129I volatilized from the sample collected in 0.01 M HNO3 solution with a reducing agent (e.g., NaHSO3) and was rapidly measured by ICP-MS. Analytical conditions, such as pyrolysis temperature and types of mobile phase gas, catalyst, and trapping solution, were optimized to obtain a high recovery rate of spiked 129I. Finally, the optimized method was applied for the simultaneous analysis of other volatile radionuclides, such as 3H and 14C. The performance test results for the optimized method confirmed that the LSC (for 3H and 14C) and ICP-MS (for 129I) measurements, with the separation of volatile nuclides using a high-temperature combustion furnace, were reliable.
KEYWORD
I-129, Pyrolysis, Tube-furnace, Method validation, Simultaneous determination
FullTexts / Linksout information
Listed journal information
ÇмúÁøÈïÀç´Ü(KCI)